
In general lithium ions move between the anode and the cathode across the electrolyte. Under discharge, electrons follow the external circuit to do electric work and the lithium ions migrate to the cathode. During charge the lithium metal plates onto the anode, freeing O 2 at the cathode. Both non-aqueous (with Li2O2 or LiO2 as the discharge products) and aqueous (LiOH as the dis. Lithium ions disperse from the anode during discharge and go to the porous cathode, where they react with ambient oxygen to generate lithium peroxide (Li2O2). [pdf]
Oxygen gas (O 2) introduced into the battery through the air cathode is essentially an unlimited cathode reactant source due to atmospheric air. Because of this the air cathode is the most important component of the system. The lithium metal reacts with oxygen gas to give electricity according to the following reactions: Discharge
The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow. [ 1 ] Pairing lithium and ambient oxygen can theoretically lead to electrochemical cells with the highest possible specific energy.
Lithium in the anode undergoes a redox reaction, and lithium ions (Li +) are constantly transported through the electrolyte to the cathode and react with oxygen molecules. Lithium oxide (Li 2 O) and lithium peroxide (Li 2 O 2) are generated in the air cathode. The general reaction are presented as:
The lithium-air battery works by combining lithium ion with oxygen from the air to form lithium oxide at the positive electrode during discharge. A recent novel flow cell concept involving lithium is proposed by Chiang et al. (2009). They proposed to use typical intercalation electrode materials as active anodes and cathode materials.
Lithium oxides form during discharging cycle as lithium ions are transferred to the cathode and react with incoming oxygen. The recharging process involves the reduction of lithium oxides (Li 2 O and Li 2 O 2). However, Li 2 O is not electrochemically active and subsequently not participating reversible reactions.
In typical Li-air batteries, oxygen gas is used as a cathode material along with a catalyst and porous carbon as a Li 2 O 2 reservoir in a cathode. Li metal is used as an anode which plays the basic role of Li source in Li-air batteries.

The (IEC) was established in in 1906 and co-ordinates development of standards for a wide range of electrical products. The IEC maintains two committees, TC21 established in 1933 for rechargeable batteries, and TC35 established in 1948 for primary batteries, to develop standards. The current designation system was adopted in 1992. Battery types are designated with a letter/number sequence indicating number of cells, cell che. [pdf]
Knowing how to read these names helps in selecting the right battery for your needs. Yuasa, a leading battery manufacturer, uses a specific structure for its battery names. For instance, the initial letter 'Y' denotes Yuasa. Understanding these codes can simplify the process of identifying the right battery.
Battery types are designated with a letter/number sequence indicating number of cells, cell chemistry, cell shape, dimensions, and special characteristics. Certain cell designations from earlier revisions of the standard have been retained. The first IEC standards for battery sizes were issued in 1957.
Certain sizes, given by one or two digit numbers, represent standard size codes from previous editions of the standard. Sizes given as 4 or more digits indicate the diameter of the battery and the overall height. The numbers in the code correlate with the battery dimensions.
The current designation system was adopted in 1992. Battery types are designated with a letter/number sequence indicating number of cells, cell chemistry, cell shape, dimensions, and special characteristics. Certain cell designations from earlier revisions of the standard have been retained.
The letters and numbers in the code indicate the number of cells, cell chemistry, shape, dimensions, the number of parallel paths in the assembled battery and any modifying letters deemed necessary. A multi-section battery (two or more voltages from the same package) will have a multi-section designation.
For instance, the initial letter 'Y' denotes Yuasa. Understanding these codes can simplify the process of identifying the right battery. If you just want to find the perfect battery for your vehicle, you can check out our Yuasa Battery Finder on the website —just click Battery Search.

Generally, the negative electrode of a conventional lithium-ion cell is made from . The positive electrode is typically a metal or phosphate. The is a in an . The negative electrode (which is the when the cell is discharging) and the positive electrode (which is the when discharging) are prevented from shorting by a separator. The el. Lithium-ion batteries accept a maximum charge current of 1C or less, where 1C refers to the capacity of 1 times the current to the charge over 1 hour. [pdf]
A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li + ions into electronically conducting solids to store energy.
Don’t allow the battery voltage to drop below 3.0V as it can damage the battery Lithium batteries will often have a specified maximum discharge current of say 2C, which means 2x their mAh rating. For example a 120mAh battery with a 2C max discharge current would only allow you to draw up to 240mA continuous operating current.
In order to achieve the lower nominal voltage, the AAA battery contains internal circuitry which regulates the voltage between the terminals. A lithium ion battery has an operating range of -30°C to 60°C, however the manufacturer does not specify if the additional circuitry has any effect on this operating range.
The manufacturer rating of the AAA lithium ion rechargeable battery states that the nominal voltage is 1.5V and can maintain up to a 2A discharge current. However, the nominal voltage of a standard lithium ion battery is 3.0V.
More specifically, Li-ion batteries enabled portable consumer electronics, laptop computers, cellular phones, and electric cars. Li-ion batteries also see significant use for grid-scale energy storage as well as military and aerospace applications. Lithium-ion cells can be manufactured to optimize energy or power density.
Lithium-ion batteries have specific operating temperature ranges (commonly between -20°C and 60°C) due to the characteristics of their internal chemical materials. Operating outside this range can significantly affect performance.
We are deeply committed to excellence in all our endeavors.
Since we maintain control over our products, our customers can be assured of nothing but the best quality at all times.